skip to main content


Search for: All records

Creators/Authors contains: "Wilber, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many Alaska communities rely on heating oil for heat and diesel fuel for electricity. For remote communities, fuel must be barged or flown in, leading to high costs. While renewable energy resources may be available, the variability of wind and solar energy limits the amount that can be used coincidentally without adequate storage. This study developed a decision-making method to evaluate beneficial matches between excess renewable generation and non-electric dispatchable loads, specifically heat loads such as space heating, water heating and treatment, and clothes drying in three partner communities. Hybrid Optimization Model for Multiple Electric Renewables (HOMER) Pro was used to model potential excess renewable generation based on current generation infrastructure, renewable resource data, and community load. The method then used these excess generation profiles to quantify how closely they align with modeled or actual heat loads, which have inherent thermal storage capacity. Of 236 possible combinations of solar and wind capacity investigated in the three communities, the best matches were seen between excess electricity from high-penetration wind generation and heat loads for clothes drying and space heating. The worst matches from this study were from low penetrations of solar (25% of peak load) with all heat loads. 
    more » « less
  2. null (Ed.)
    High transportation costs make energy and food expensive in remote communities worldwide, especially in high-latitude Arctic climates. Past attempts to grow food indoors in these remote areas have proven uneconomical due to the need for expensive imported diesel for heating and electricity. This study aims to determine whether solar photovoltaic (PV) electricity can be used affordably to power container farms integrated with a remote Arctic community microgrid. A mixed-integer linear optimization model (FEWMORE: Food–Energy–Water Microgrid Optimization with Renewable Energy) has been developed to minimize the capital and maintenance costs of installing solar photovoltaics (PV) plus electricity storage and the operational costs of purchasing electricity from the community microgrid to power a container farm. FEWMORE expands upon previous models by simulating demand-side management of container farm loads. Its results are compared with those of another model (HOMER) for a test case. FEWMORE determined that 17 kW of solar PV was optimal to power the farm loads, resulting in a total annual cost decline of ~14% compared with a container farm currently operating in the Yukon. Managing specific loads appropriately can reduce total costs by ~18%. Thus, even in an Arctic climate, where the solar PV system supplies only ~7% of total load during the winter and ~25% of the load during the entire year, investing in solar PV reduces costs. 
    more » « less
  3. null (Ed.)